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I. Introduction. In the present study, we examine a pseudo-macrocrack. This is a 
crack which is located in a composite or nonuniform body and has edges that are confined by 
unfractured elements of the structure. The classical example of a crack of this type is a 
macrocrack in a composite with a brittle ceramic matrix and intact ductile fibers which 
constrain its edges and prevent its opening [i, 2]. The most general formulation was used 
in [3] to study a single pseudo-macrocrack in an elastic, linearly anisotropic body under 
plane strain conditions. Here, the relationship between the forces transmitted from one 
edge to the other ~nl and the opening of the edges w = [vy(x)] was assumed to be linear: 

~(z) = kw(x) - ( i .  i )  

The following constraint parameter was introduced 

I --Vyz~zy Re ~ 
=2k E~ ~i  (1.2) 

this parameter having the dimension of inverse length (A -I is of the same order of magnitude 
as the characteristic dimension of the structure of the material). Also, it was shown from 

the condition 

xz > I (I. 3) 

that the critical load p, for advance of the pseudo-macrocrack is independent of its length 
2~[3]: 

P*=V4-~p k' (1.4) 

It was further assumed that propagation of the tip of the pseudo-macrocrack occurs in a 
quasi-brittle manner. Above, 27p is the unit dissipation of energy during its advance. It 
was also shown in [3] that condition (1.3) (which is realized for pseudo-macrocrack lengths 
greater than several periods of the structure) makes it possible to to efficiently con- 
struct a solution in the form of an asymptotic series in inverse powers of the dimension- 

less parameter l~. 
Nevertheless, it is evident that the linear relational law a - w (i.I) examined in 

[3] does not even come close to fully covering the wide variety of practical situations or 
engineering requirements that are encountered. For example, it follows from the analysis 
made in [4, 5] that in the separation of intact fibers from the matrix or slip behind the 
front of a growing crack, the constitutive equation corresponding to (i.i)has the form 
o • ~ 4-w. More complex situations are also possible. In connection with this, below we con- 
struct the resolvent equation of the plane problem of the anisotropic theory of elasticity 
for a single pseudo-macrocrack with a nonlinear "quasi-plastic" law assigned for its edge s 

~ = P (~ (~:)) (i. 5) 

and we obtain its solution in specific cases. We find the limit loads for a body with a 
pseudo-macrocrack for certain special forms of the function p(w). It is assumed that the 
function p(w) is determined by the structure of the material and the mode of fracture and 
is independent of the size or shape of the pseudo-macrocrack. It must either be known a 
priori or be found from independent experiments. 
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For the sake of definiteness, we will examine only active loading. Thus, consi- 
deration of the processes which occur during unload is unnecessary. The only restriction 
we impose on the function p(w) is that it not decrease. This ensures that the solution of 
the problem will be unique. Also, under the given conditions, the "response" of the elas- 
tic body to an introduced pseudo-macrocrack with interaction law (1.5) (including the limit 
load) is independent of the actual physical nature of the interaction of the edges: the 
function p(w) can describe purely nonlinearly elastic interaction of the edges, purely 
plastic behavior of the structural elements joining the edges of the crack, the interaction 
of ideally elastic components in the presence of friction, and other phenomena. 

2. Formulation of the Problem and Asymptoti c Solution. We will examine a pseudo- 
macrocrack occupying the region [xiI<l, x2 = O, Ix~]<~ of an infinite anisotropic space. 
We will assume that the normal axis x 3 is a plane of elastic symmetry. In this case, the 
two-dimensional problem decomposes into two distinct problems: longitudinal shear and 
planar deformation. At infinity, we assign a uniform field of tensile stresses 

~22=P~, o~=~11=0. (2.1) 

With unequal roots Mr (r = I, 2) for the characteristic equation, the stresses ali, a22 , a12 
and displacements u, v are expressed through the two complex potentials of S. G. Lekhnit- 
skii [6]: 

~1~ = - -  2He ( ~ r  (z~) + ~r (z.~)), u = 2Re  (p~% (z~) + p 2 ~  (z~)), 

v = 2Re ( q , ~  (zj) + q2~2 (z2))" 
(2.2) 

Here, 
(1.5) 

(w(x) 
axis 

Zr-= Xl or ~rX2; Pr, qr are complex parameters [6] ; ~r(Zr) ---- ~ (z~) (r= I, 2). Conditions 
are assigned on the edges of the pseudo-macrocrack. Meanwhile, by virtue of symmetry 

ok(xl)=P(W(xl) ), o~(xl)=O, ]xl]<[ (2.3) 

----- Y+(X) -- V-(X)). The following relations are satisfied on the remaining part of the x I 

~+ (x,) = 0, v (~i) = 0, I x~ I > I. 
(2.4) 
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It is convenient to look for the solution of the given problem in the form of Cauchy in- 
tegrals, as was done in [3]: 

§ 

~t j" q (x) d.~" 
~ ( z ~ )  = r~z,, + ~-~_ ~; - ~  ~_~ ( 2 . 5 )  

(F= a r e  c o n s t a n t s  which  d e t e r m i n e  t h e  f i e l d  ( 2 . 1 )  a t  i n f i n i t y ,  w h i l e  q ( x )  i s  a c o n t i n u o u s  
real-valued function which must be determined). In Eq. (2.5), the subscripts r and t al- 
ternately take values of i and 2: if r = I, then t = 2, and conversely. The unknown real 
function q(x) is connected with the opening of the pseudo-macrocrack w(x) ~ [v(x)] by the 
relation [3] 

w (x) = ~q (x), o~ = 2 ~ Re ~ 
~#t~ ( 2 . 6 )  

The condition of continuity of the displacements reduces to 

q(0 = ~ ( - 0  = o. (2.7) 

In this case (see [3]), Eqs. (2.2), (2.5) identically satisfy all boundary conditions 
(2.1), (2.3-2.4) except for the first condition of (2.3). The distribution of the stresses 
a22(x ) on the x I axis is given by the formula 

+l 

t ~ q' (~) 
~+ (x) = ~ (z) = p= + -~- J ~ d~, ( 2 . 8 )  

- - l  

where t h e  i n t e g r a l  i s  u n d e r s t o o d  i n  t h e  s e n s e  o f  t h e  p r i n c i p a l  Cauchy v a l u e  f o r  t h e  i n t e r -  
i o r  p o i n t s  o f  t h e  i n t e r v a l  [ - 2 ,  2 ] .  S a t i s f y i n g  t h e  f i r s t  c o n d i t i o n  i n  ( 2 . 3 )  by  means o f  
( 2 . 6 ) ,  ( 2 . 8 ) ,  we o b t a i n  a n o n l i n e a r  s i n g u l a r  i n t e g r o d i f f e r e n t i a l  e q u a t i o n  

+Z 

t 
j q'(~) d ~ =  poo ( 2 . 9 )  
- - l  

f o r  t h e  unknown f u n c t i o n  q ( x ) .  Th i s  e q u a t i o n  can  be  r e d u c e d  t o  a n o n l i n e a r  i n t e g r a l  equa-  
t i o n  with a logarithmic kernel and can be solved numerically. Here, we will examine the 
conditions under which Eqs. (2.7), (2.9) can be solved asymptotically. 

Let us evaluate the function q(x) at x ~ +~. If we allow for (2.7) and make use of 
the properties of Cauchy integrals near the ends of the line of integration [7] in the case 
of Eq. (2.9), we obtain the usual root relation for crack-opening w(x) 

q(x) ~ 2 N V  ~ l - - f x  I ( 2 . 10 )  

for any function p(w) which is finite in zero (w ~ 0). The constant N is connected with 
the stress-intensity factor K I at the tip of the pseudo-macrocrack by the relation 

K~ = N V  2n. (2.11) 

Thus, the asymptote of the stress-strain state around the tip of a pseudo-macrocrack coin- 
cides with the usual asymptote. We introduce the quantity m0~max {w(xl)}, xl ~ [--l, l] 
being the maximum opening of the pseudo-macrocrack at the given level of applied loads (in 
the case of boundary conditions (2.1), this maximum will obviously be reached at the center 
of the pseudo-macrocrack). Then we can use the secant modulus p(w) (Fig. I) ~(w) = p(w)/w 
to find a condition which is equivalent to the inequalities (1.3) of the linear theory and 
determines a small parameter that can be used to expand the solution. This condition can 

be represented in the form 

~p/>> t,  ~p ~ akp(wo). (2.12) 

Accordingly, we can take (Ap2) -I as the small parameter. 
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If inequality (2.12) is satisfied, then the solution of Eq. (2.9), asymptotically 
correct for points of interval [-~, ~] which are not too close to its ends .(Ix[~l--%~1), 
takes the form 

q(.) = ~.o~-~(t + o(k~,z)-~)), ( 2 . 1 3 )  

where by definition we have w| ~ w(p| where w(p) is the inverse of p(w). The physical 
value of w~ is the divergence of the edges of the pseudo-macrocrack at a sufficient dis- 
tance from its ends. 

Let us calculate the stress-intensity factor K I at the tip of the pseudo-macrocrack. 
As in the case of a pseudo-macrocrack with linear constraints, the factor will be indepen- 
dent of the length of the crack if conditions (2.12) are satisfied. Accordingly, the limit 
loads will also be independent of the crack's length. Having this in mind, we will examine 
a semi-infinite pseudo-macrocrack under the same loads (2.1) as above. We calculate the 
Eshelby-Cherepanov-Rice integral 

1 Ovi 
J = ,f (-2- oiJgiJ dY --  (TiJnJ -O'-ff d~ ) ' (2.14) 

F 

taken over the closed contour F = F0@ F+ UF- UY~, shown in Fig. 2 and, thus, identically 
equal to zero. Having separated it into the sum of integrals, we obtain 

7 0 =--J~--Y+ - -  7_. (2.15) 

Constricting the contour r 0 toward the tip of the pseudo-macrocrack and allowing for the 
path of the integral, we find that 

Jo = --(a/4)(K~) ~. ( 2 . 1 6 )  

The integral J| over the infinitely distant contour F| approaches zero, since the stress and 
strain fields are composed of a uniform external field and fields connected with the 
pseudo-macrocrack. The latter decay in accordance with the law -r -I at distances from the 
tip r >> X~, so that J, - r -I. The sum of the integrals is easily represented in the form 

0 --~ 

J+ + ] - =  o22(x)~dx +. a~(x)-~x dx., 
- - r  0 

- - r  

Transforming this expression, we find J+ + Y- = y o~(x) dw(x), Making a substitution of 
0 

v a r i a b l e s  h e r e  w i t h  a l l o w a n c e  f o r  c o n d i t i o n  ( 2 . 3 )  a n d  t h e  f a c t  t h a t  w ( p )  ~ w~ a t  r ~ ~ ,  we 
obtain 

7 + + Y - -  S P0v) dw" 
0 

(2.].7) 

Combining (2.15-2.17), we finally obtain 

( ' "[ 
KI = "W" p (w) d~v. ( 2 . 1 8 )  

0 

With linear constraint law (i.I) p(w) = kw, Eq. (2.18) becomes K~ = p~V2-~! (A is deter- 
mined from (1.2)). This quantity (KI) was calculated in [3] by a different method. 

We derive the condition for the advance of a pseudo-macrocrack with "plastic" con- 
straints from the Irwin criterion. Here, we equate the calculated value of K I (2.18) to 
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its critical value KIr 

KI = ](Ie ~ 4y___pE_.yy • = Re i ( 2 . 1 9 )  
• -- VyzV~ ) ' ~#t 2 7" 

Inserting (2.18) into (2.19), we find the final condition for advance of the pseudo-macro- 
crack in the form 

~ p(w) clw = 27v , 
0 

w h e r e  w*| s h o u l d  b e  t a k e n  a s  t h e  v a l u e  o f  t h e  f u n c t i o n  w(p| a t  p| = p*.  W i t h  t h e  u s e  o f  
p* 

* *  
the inverse function w(p), this same formula can be represented as woop -- w(p}dp = 27p. 

0 

It should be noted that, with linear law p(w) = kw, after calculation of the integral 
criterion (2.20) reduces to Eq. (1.4) - which was obtained in [3] by a different method. 

It is fully valid to use condition (2.19) as the fracture criterion, since in accor- 
dance with (2.10) a purely linearly elastic stress state is realized in the immediate 
vicinity of the crack tip, and all possible dissipative processes occur at a certain dis- 
tance (-X~) from it. Thus, the dynamic equilibrium of the tip of a pseudo-macrocrack is 
determined exclusively by theoretical stress-intensity factor K I (2.18) and the fracture 
work of the material 27p. The quantity 27p does not include friction losses, fiber pull- 
out, or other forms of energy dissipation not associated directly with the processes occur- 
ring at the tip. 

Thus, as noted above, the critical load for the advance of pseudo-macrocrack depends 
only on the form of the function p(w) - the physical meaning of which may be completely 
arbitrary. 

As an example, we will examine a pseudo-macrocrack with a logarithmic edge-constraint 
law: 

(2.20) 

P( 'O = p01n(l + 70 u; ) (2.21) 

(P0 a n d  k a r e  f i x e d  c o n s t a n t s ) .  I n s e r t i n g  ( 2 . 2 1 )  i n t o  ( 2 . 2 0 ) ,  we o b t a i n  a n  e q u a t i o n  c o n -  
n e c t i n g  the critical load p* with the fracture work 27p and the constraint parameters P0, k: 

. 2 

(P*/Po - -  t) exp (P*/Po) + I = 2yph/po, ( 2 . 2 2 )  

f r o m  w h i c h  a t  p* << Po we f i n d  P* .=: V 4?pk, w h i l e  a t  p* >> Po we h a v e  .P*= Po ln(2ypk/p~). 
After the solution of the problem, it is necessary to check for satisfaction of inequality 
(2.12). In the case of law (2.21), this condition reduces to the form 

klp*/po >> Eu(exp (P*/Po)-- 1). (2.23) 

If the value of p* found from Eq. (2.22) after substitution of this equality into (2.23) 
does not violate the latter, then the above asymptotic approach will give accurate results 
throughout the possible range of external loads p| from zero to p*. The example we have 
examined shows that, generally speaking, for a pseudo-macrocrack of length 2~ with a non- 
linear edge-constraint law (1.5), there may be a region of external loads p within which 
either the above asymptotic approach is invalid or violation of inequality (2.12) leads to 
deviations from Eqs. (2.13), (2.18) (see Part 3). 

Without detailing the steps taken, let us present the limit load p* and criterion of 
applicability of the asymptotic formulas in the case of a power edge-interaction law: 
p(w) = kwllS (s > !). In accordance with (2.19), the limit load p* is expressed by the for- 
mula ~* = (2y~(l ~ I/~ks)I/(8+1), i \ while the condition of its applicability is Iks>>Ey(p*) s-1. 

13. Pseudo-Macrocrack With Elastic--IdeallyPlastic and Plastic-Rigid Constraints. 
The case of a pseudo-macrocrack of length 2b with elastic-ideally plastic constraints de- 
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termined by the formula 

kU', if u; < 7Vy, 
P (~') = [ p y  ~ -  [;[Cy, i f  ~V > Wy ( 3 . 1 )  

(Fig. 3) is deserving of special attention. We will assume that the condition 

, k b > > E  u ( 3 . 2 )  

is satisfied. If the external load ay ~ = p~ is less than the limit load py, then the solu- 
tion of this problem trivially follows from the solution of the problem of a pseudo-macro- 
crack with linear constraints. If p| > py, then the solution formally coincides with the 
solution of the problem of a macrocrack of length 2~ (~ < b) initiated from the ends of a 
pseudo-macrocrack of 'the size b - ~ (Fig. 4) [8]. In accordance with (3.1), the following 
conditions are satisfied on the sections lixJ < 

(~2(x) = p y ,  o'S(x) = O, ( 3 . 3 )  

while on the sections ~ < Ix l < b 

o $  (x) ---- k~, o~(x)---- O. ( 3 . 4 )  

The solution of problem (3.3-3.4) is represented by Cauchy integrals, analogous to (2.5). 
Meanwhile, as in [8], a singular integrodifferential equation can be obtained for the un- 
known real density of the potentials q(x) (q(• = 0): 

+b 
' I' q'I > IxL<Z, 

P ~ + T .  ~ - l~q(x), Z < l x i < b .  
- -b  

Here, as in [3, 8], A is determined by Eq. (1.2). The unknown transition point ~i is found 
from the condition ~q(~) = py. Meanwhile, q(x)>Py%'a, �9 on the central section, while at 
l< ]x]<b the condition q(x)<py% -I. must be satisfied. It should be noted that that the 
value of the extreme sections of b - ~ will be comparable to the length of the pseudo-macro- 
crack (b - ~ - b) only when the following condition is satisfied 

o < P = - - P y  << t 
p----V-- V-~" (3.5) 

Since inequality (3.2) is equivalent to ~b >> I, condition (3.5) establishes only a rela- 
tively narrow range of external loads for which b - ~ - b is possible. If the external 
load p| does not satisfy the last inequality in (3.5), then the end regions will be small 
compared to the length of the pseudo-macrocrack: b - ~ << b. 

Let us examine this situation in greater detail, not only because of its importance, 
but because it can be solved analytically. In the given case, there are two asymptotes 
near the ends of the pseudo-macrocrack: a near asymptote, at distances r << A -I, with the 
stress-intensity factor KI; a far asymptote, at distances r such that~b--l<<r<<l,r>>~ -I, 
with the stress-intensity factor 

(3.6) 

Calculating the Eshelby-Cherepanov--Rice integral (2.14) over the contours depicted in Fig. 
2 (with the contour F 0 extending to within the range of the near asymptote and the contour 
F| extending to within the range of the far asymptote), we find the relationship between K I 
and KI~: 

I -- 'Vyz'Vzy ̂ , [~zoo'~2 i -- 'Vyz'Vzy ~ __ 
-2--~ "~ kl'-I I = 2Ey • (Kt)~ q- k p y w  (l). 
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Since w(~) = wy ~ py/k at the point x ~ i l ,  the last relation takes the simple form 

(Kr) = (K0 -- 2pU  ( 3 . 7 )  

Finally, considering (3.6), we obtain the final expression 

= Vip  -- + 2pU  (3.8) 

Generally speaking, it is not always possible to ignore the last term in the radicand - 
even with allowance for Ab >> 1 - since the level of the external load may turn out to be 
such that the first term in the radicand will be comparable to the second. This occurs, 
for example, if P~ ~ PY (~ @ 2~r~-~). , 

The critical stresses p, are determined by equating the calculated value of K I (3.8) 
to its critical value (2.19): 

/ 4VpEy 2p2y 
p ,  = p-z + V • (t - ~vz~zy) ~b ~ b  " ( 3 . 9 )  

Expression (3.9) for p, is valid only when PY< ~ 4?pk. Otherwise, Eq. (1.4) is valid. 
A pseudo-macrocrack with plastic-rigid constraints is the limiting case of the ex- 

ample examined above. The function p(w) (3.1) is taken in the form 

0, if W < Wy, 

p (w) = Py,  i f  W > Wy. 

Here, if external load p, is less than py, the pseudo-macrocrack does not disturb the uniform 
external field surrounding it. At p| > py, the field of pseudo-macrocrack coincides with the 
field of an ordinary macrocracksubjected to action of uniform loads ay - p| at infinity and 
normal forces a~ - py on its edges. Stress-intensity factor is given by expression KI = (P~-- 
Pr)~-~(which leads to critical loads p, = py ~ ~/4~;Ey/[• 
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